This is a measure of a capacitor's ability to store charge. A large capacitance means that more charge can be stored. Capacitance is measured in farads, symbol F. However 1F is very large, so prefixes are used to show the smaller values.

Three prefixes (multipliers) are used, ?? (micro), n (nano) and p (pico):

?? means 10-6 (millionth), so 1000000??F = 1F
n means 10-9 (thousand-millionth), so 1000nF = 1??F
p means 10-12 (million-millionth), so 1000pF = 1nF
Capacitor values can be very difficult to find because there are many types of capacitor with different labelling systems!

Variable Electrical parameters are those that the Design Engineer must specify when selecting a Quartz Crystal device for any particular application.

1. Package Type: Will the package be Through Hole or Surface Mount, and are there size constraints with either.

2. Frequency

3. Load Capacitance: The specified Load Capacitance is dependent on the Resonance Mode required in the application . For Series resonance, no Load Capacitance is required. For Parallel Resonance, the Load Capacitance specified by the Design Engineer will be used to calibrate the Quartz Crystal thereby effecting the major operating characteristics of the device, including initial Frequency Tolerance.

4. Frequency Tolerance: At 25 degree Celsius, an amount of initial frequency deviation acceptable for the application is required. Tighter specifications of Frequency Tolerance lower yield in Quartz Crystal Blank production thereby serving to increase production costs.

5. Stability: Over the Operating Temperature Range, an amount of total deviation acceptable for the application. Tighter specifications of Stability lower yield in Quartz Crystal Blank production thereby serving to increase production costs.

6. Operating Temperature: Standard Operating Temperature ranges are generally considered as -20-+70 degrees Celsius (considered "commercial" Operating Temperature), and -40-+85 degrees Celsius (considered "Industrial" Operating Temperature) Other Operating temperature ranges are available and should be specified.

Diodes based on organic chemicals have been produced using low temperature processes. Hole rich and electron rich conductive polymers may be ink jet printed in layers. Most of the research and development is of the organic LED (OLED). However, development of inexpensive printable organic RFID (radio frequency identification) tags is on going. In this effort, a pentacene organic rectifier has been operated at 50 MHz. Rectification to 800 MHz is a development goal. An inexpensive metal insulator metal (MIM) diode acting like a back-to-back zener diode clipper has been delveloped. Also, a tunnel diode like device has been fabricated.

Surge Arresters conduct lightning surges around the protected insulator so that a lightning flashover is not created. They are designed to be installed functionally in parallel with the line insulator. The arrester conducts the lightning surges around the protected insulator so that a subsequent 60 Hz fault on the circuit is not created. The arrester becomes a low ohmic path for the surge as voltage across it increases. When the voltage returns to normal, the arrester once again returns to a high ohmic device with only microamps of leakage current.

If an arrester experiences a surge higher than it is capable of handling without failure, and it is failure, equipped with an isolating device, it will isolating device, disconnect during the event.

After the surge is over, and fault current starts to flow, the disconnector senses the fault and ignites the powder built into the device.

The disconnecting device is not an interrupter so during this rare event, an interrupting device must clear the circuit.

Kingtronics supply series kinds of Capacitors and Diodes .All this products are sighed in our Kt Trademark, For the Kt Kingtronics trademark, We can give you the first class service. Because Kt Kingtronics has the following Strength and Advantage:

Kt Kingtronis has High quality commitment
Well-known brand Kt Kingtronics
Kt Kingtronics can provide Competitive prices
Kt Kingtronics provide Fast lead time & stock
Kt Kingtronics has Strong sales support
Kt Kingtronics ‘s Sales response quickly
Kt Kingtronics has Strong technical support
Kt Kingtronics has Excellent customer service
Kt Kingtronics Exhibitions overseas

A diode bridge is an arrangement of four (or more) diodes in a bridge configuration that provides the same polarity of output for either polarity of input. When used in its most common application, for conversion of an alternating current (AC) input into direct current a (DC) output, it is known as a bridge rectifier. A bridge rectifier provides full-wave rectification from a two-wire AC input, resulting in lower cost and weight as compared to a rectifier with a 3-wire input from a transformer with a center-tapped secondary winding.

The essential feature of a diode bridge is that the polarity of the output is the same regardless of the polarity at the input. The diode bridge circuit is also known as the Graetz circuit after its inventor, physicist Leo Graetz.

In actuality, free electrons in a conductor nearly always flow from the negative to the positive pole. In the vast majority of applications, however, the actual direction of current flow is irrelevant. Therefore, in the discussion below the conventional model is retained.

Prior to the availability of integrated circuits, a bridge rectifier was constructed from "discrete components", i.e., separate diodes. Since about 1950, a single four-terminal component containing the four diodes connected in a bridge configuration became a standard commercial component and is now available with various voltage and current ratings.

For many applications, especially with single phase AC where the full-wave bridge serves to convert an AC input into a DC output, the addition of a capacitor may be desired because the bridge alone supplies an output of fixed polarity but continuously varying or "pulsating" magnitude, an attribute commonly referred to as "ripple".

The valve arrester consists of disks of zinc oxide material that exhibit low resistance at high voltage and high resistance at low voltage. By selecting an appropriate configuration of disk material, the arrester will conduct a low current of a few milliamperes at normal system voltage. During conditions of lightning or switching surge over voltage, the surge current is limited by the circuit; and for the magnitudes of current that can be delivered to the arrester location, the resulting voltage will be limited to controlled values, and to safe levels as well, when insulation levels of equipment are coordinated with the surge arrester protective characteristics.

A typical surge arrester consists of disks of zinc oxide material sized in cross-sectional area to provide desired energy discharge capability, and in axial length proportional to the voltage capability. The disks are then placed in porcelain enclosures to provide physical support and heat removal, and sealed for isolation from contamination in the electrical environment.

To analyse the electrical response of a quartz crystal resonator, it is very often useful to depict it as the equivalent electrical components that would be needed to replace it. This equivalent circuit is can then be used to analyse its response and predict its performance. The basic equivalent circuit of a crystal is shown below. In this circuit C1 represents the capacitance between the electrodes. L, C, and R represent the vibrational characteristics of the crystal. The inductance results from the mass of the material, C from the compliance, and R arises from the losses of which the greatest contributor is frictional losses.

Looking at this circuit it can be seen that there are two ways in which the circuit can resonate. One is from the resonance of L and C which provides a series resonance, giving a very low value of impedance at resonance. This is determined by the value of the resistance R. In this mode the external circuit has very little effect on the crystal resonance.

Schottky Rectifiers have been used in the power supply industry for approximately 15 years. During this time, significant fiction as well as fact has been associated with this type of rectifier. The primary assets of Schottky devices are switching speeds approaching zero-time and very low forward voltage drop (VF). This combination makes Schottky barrier rectifiers ideal for the output stages of switching power supplies. On the negative side, Schottky devices are also known for limited high-temperature operation, high eakage and limited voltage range BVR. Though these limitations exist, they are quantifiable and controllable, allowing wide application of these devices in switch mode power supplies.

Zener diodes regulate voltage by acting as complementary loads, drawing more or less current as necessary to ensure a constant voltage drop across the load. This is analogous to regulating the speed of an automobile by braking rather than by varying the throttle position: not only is it wasteful, but the brakes must be built to handle all the engine's power when the driving conditions don't demand it. Despite this fundamental inefficiency of design, zener diode regulator circuits are widely employed due to their sheer simplicity. In high-power applications where the inefficiencies would be unacceptable, other voltage-regulating techniques are applied. But even then, small zener-based circuits are often used to provide a “reference” voltage to drive a more efficient amplifier circuit controlling the main power.

Contact us

Tel: (86) 769 8118 8110
Tel: (852) 8106 7033
Fax: (852) 8106 7099
Skype: kingtronics.sales


Kingtronics International Company was established in 1995 located in Dongguan City of China to handle all sales & marketing for factories located in Chengdu, Sichuan and Zhaoqing, Guangdong, China. In 1990, we established the first factory to produce trimming potentiometer and in 1999 we built up new factory in Zhao Qing, Guangdong. Now with around 850 workers, Kingtronics produce trimming potentiometers, dipped tantalum capacitors, multilayer ceramic capacitors, and diode & bridge rectifier. We sell good quality under our brand Kingtronics, and Kt, King, Kingtronics are our three trademarks. All our products are RoHS compliant, and our bridge rectifier have UL approval. Please visit our Products page, you could please download all our PDF datasheet and find cross reference for our Trimming Potentiometer and capacitors.

Tantalum and Ceramic Capacitors Cross Reference ↓ Download
Diodes & Rectifiers List(PDF: 97KB) ↓ Download
Trimming Potentiometer Cross Reference ↓Download

Meet Kingtronics in Moscow soon
Convention and Exhibition Centre,HongKong
Date: 13-16 October, 2019
Booth No.: 5G-C26

Meet Kingtronics in Munich soon
New Munich Trade Fair Centre, Germany
Date: 10-13 November, 2020
Booth No.: To be advised



<< 2020-8 >>